3.86 \(\int \frac {(d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))}{x^5} \, dx\)

Optimal. Leaf size=321 \[ \frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {3 c^4 d \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{4 \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {c x-1} \sqrt {c x+1}}+\frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {c x-1} \sqrt {c x+1}}-\frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {c x-1} \sqrt {c x+1}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-1/4*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^4+3/8*c^2*d*(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x^2-1/12*b*
c*d*(-c^2*d*x^2+d)^(1/2)/x^3/(c*x-1)^(1/2)/(c*x+1)^(1/2)+5/8*b*c^3*d*(-c^2*d*x^2+d)^(1/2)/x/(c*x-1)^(1/2)/(c*x
+1)^(1/2)-3/4*c^4*d*(a+b*arccosh(c*x))*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1
/2)/(c*x+1)^(1/2)+3/8*I*b*c^4*d*polylog(2,-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(
1/2)/(c*x+1)^(1/2)-3/8*I*b*c^4*d*polylog(2,I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(
1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.84, antiderivative size = 333, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5798, 5740, 5738, 30, 5761, 4180, 2279, 2391, 14} \[ \frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {c x-1} \sqrt {c x+1}}-\frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {c x-1} \sqrt {c x+1}}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (c x+1) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {3 c^4 d \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{4 \sqrt {c x-1} \sqrt {c x+1}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^5,x]

[Out]

-(b*c*d*Sqrt[d - c^2*d*x^2])/(12*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (5*b*c^3*d*Sqrt[d - c^2*d*x^2])/(8*x*Sqrt
[-1 + c*x]*Sqrt[1 + c*x]) + (3*c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(8*x^2) - (d*(1 - c*x)*(1 + c*x
)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(4*x^4) - (3*c^4*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])*ArcTan
[E^ArcCosh[c*x]])/(4*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, (-I)*E^
ArcCosh[c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, I*E^ArcCosh[
c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5738

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x
] + (-Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)
*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Dist[(c^2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f^2*(m + 1)*Sqrt[1 + c*x]*
Sqrt[-1 + c*x]), Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]) /; FreeQ[{
a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[m, -1]

Rule 5740

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x]
+ (-Dist[(2*e1*e2*p)/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Dist[(b*c*n*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sq
rt[-1 + c*x]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
&& IntegerQ[p - 1/2]

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^5} \, dx &=-\frac {\left (d \sqrt {d-c^2 d x^2}\right ) \int \frac {(-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^5} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \frac {-1+c^2 x^2}{x^4} \, dx}{4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 c^2 d \sqrt {d-c^2 d x^2}\right ) \int \frac {\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x^3} \, dx}{4 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {\left (b c d \sqrt {d-c^2 d x^2}\right ) \int \left (-\frac {1}{x^4}+\frac {c^2}{x^2}\right ) \, dx}{4 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 b c^3 d \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{x^2} \, dx}{8 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 c^4 d \sqrt {d-c^2 d x^2}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{8 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {\left (3 c^4 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \text {sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {3 c^4 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 i b c^4 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 i b c^4 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {3 c^4 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (3 i b c^4 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (3 i b c^4 d \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c d \sqrt {d-c^2 d x^2}}{12 x^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {5 b c^3 d \sqrt {d-c^2 d x^2}}{8 x \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 c^2 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac {d (1-c x) (1+c x) \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac {3 c^4 d \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {3 i b c^4 d \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.28, size = 574, normalized size = 1.79 \[ \frac {-15 a c^4 d^2 x^4 \sqrt {\frac {c x-1}{c x+1}}+21 a c^2 d^2 x^2 \sqrt {\frac {c x-1}{c x+1}}+9 a c^4 d^{3/2} x^4 \sqrt {\frac {c x-1}{c x+1}} \log (x) \sqrt {d-c^2 d x^2}-9 a c^4 d^{3/2} x^4 \sqrt {\frac {c x-1}{c x+1}} \sqrt {d-c^2 d x^2} \log \left (\sqrt {d} \sqrt {d-c^2 d x^2}+d\right )-6 a d^2 \sqrt {\frac {c x-1}{c x+1}}-9 i b c^5 d^2 x^5 \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )+9 i b c^5 d^2 x^5 \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )-9 i b c^4 d^2 x^4 (c x-1) \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )+9 i b c^4 d^2 x^4 (c x-1) \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )-15 b c^4 d^2 x^4-15 b c^4 d^2 x^4 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)+9 i b c^4 d^2 x^4 \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-9 i b c^4 d^2 x^4 \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )+15 b c^3 d^2 x^3+2 b c^2 d^2 x^2+21 b c^2 d^2 x^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)-2 b c d^2 x-6 b d^2 \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)}{24 x^4 \sqrt {\frac {c x-1}{c x+1}} \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^5,x]

[Out]

(-2*b*c*d^2*x + 2*b*c^2*d^2*x^2 + 15*b*c^3*d^2*x^3 - 15*b*c^4*d^2*x^4 - 6*a*d^2*Sqrt[(-1 + c*x)/(1 + c*x)] + 2
1*a*c^2*d^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)] - 15*a*c^4*d^2*x^4*Sqrt[(-1 + c*x)/(1 + c*x)] - 6*b*d^2*Sqrt[(-1 +
c*x)/(1 + c*x)]*ArcCosh[c*x] + 21*b*c^2*d^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] - 15*b*c^4*d^2*x^4*Sqr
t[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + (9*I)*b*c^4*d^2*x^4*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - (9*I)*b*c^
5*d^2*x^5*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - (9*I)*b*c^4*d^2*x^4*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]]
+ (9*I)*b*c^5*d^2*x^5*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]] + 9*a*c^4*d^(3/2)*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*
Sqrt[d - c^2*d*x^2]*Log[x] - 9*a*c^4*d^(3/2)*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2]*Log[d + Sqrt[d
]*Sqrt[d - c^2*d*x^2]] - (9*I)*b*c^4*d^2*x^4*(-1 + c*x)*PolyLog[2, (-I)/E^ArcCosh[c*x]] + (9*I)*b*c^4*d^2*x^4*
(-1 + c*x)*PolyLog[2, I/E^ArcCosh[c*x]])/(24*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.61, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (a c^{2} d x^{2} - a d + {\left (b c^{2} d x^{2} - b d\right )} \operatorname {arcosh}\left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{x^{5}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arccosh(c*x))*sqrt(-c^2*d*x^2 + d)/x^5, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.73, size = 570, normalized size = 1.78 \[ -\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{4 d \,x^{4}}+\frac {a \,c^{2} \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{8 d \,x^{2}}+\frac {a \,c^{4} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{8}-\frac {3 a \,c^{4} d^{\frac {3}{2}} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )}{8}+\frac {3 a \,c^{4} \sqrt {-c^{2} d \,x^{2}+d}\, d}{8}+\frac {5 b d \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) c^{4}}{8 \left (c x +1\right ) \left (c x -1\right )}+\frac {5 b d \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{3}}{8 \sqrt {c x +1}\, x \sqrt {c x -1}}-\frac {7 b d \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) c^{2}}{8 \left (c x +1\right ) x^{2} \left (c x -1\right )}-\frac {b d \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c}{12 \sqrt {c x +1}\, x^{3} \sqrt {c x -1}}+\frac {b d \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{4 \left (c x +1\right ) x^{4} \left (c x -1\right )}+\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) d \,c^{4}}{8 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) d \,c^{4}}{8 \sqrt {c x -1}\, \sqrt {c x +1}}+\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) d \,c^{4}}{8 \sqrt {c x -1}\, \sqrt {c x +1}}-\frac {3 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right ) d \,c^{4}}{8 \sqrt {c x -1}\, \sqrt {c x +1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x)

[Out]

-1/4*a/d/x^4*(-c^2*d*x^2+d)^(5/2)+1/8*a*c^2/d/x^2*(-c^2*d*x^2+d)^(5/2)+1/8*a*c^4*(-c^2*d*x^2+d)^(3/2)-3/8*a*c^
4*d^(3/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x)+3/8*a*c^4*(-c^2*d*x^2+d)^(1/2)*d+5/8*b*d*(-d*(c^2*x^2-1))
^(1/2)/(c*x+1)/(c*x-1)*arccosh(c*x)*c^4+5/8*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)^(1/2)/x/(c*x-1)^(1/2)*c^3-7/8*b
*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)/x^2/(c*x-1)*arccosh(c*x)*c^2-1/12*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)^(1/2)/x
^3/(c*x-1)^(1/2)*c+1/4*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)/x^4/(c*x-1)*arccosh(c*x)+3/8*I*b*(-d*(c^2*x^2-1))^(1
/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4-3/8*I*b*(-d*(c^2*
x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4+3/8*I*b
*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4-3/8*I*b
*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{8} \, {\left (3 \, c^{4} d^{\frac {3}{2}} \log \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {d}}{{\left | x \right |}} + \frac {2 \, d}{{\left | x \right |}}\right ) - {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} c^{4} - 3 \, \sqrt {-c^{2} d x^{2} + d} c^{4} d - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} c^{2}}{d x^{2}} + \frac {2 \, {\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}{d x^{4}}\right )} a + b \int \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="maxima")

[Out]

-1/8*(3*c^4*d^(3/2)*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x)) - (-c^2*d*x^2 + d)^(3/2)*c^4 - 3*s
qrt(-c^2*d*x^2 + d)*c^4*d - (-c^2*d*x^2 + d)^(5/2)*c^2/(d*x^2) + 2*(-c^2*d*x^2 + d)^(5/2)/(d*x^4))*a + b*integ
rate((-c^2*d*x^2 + d)^(3/2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/x^5, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2}}{x^5} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^5,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(3/2))/x^5, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x^{5}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))/x**5,x)

[Out]

Integral((-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*acosh(c*x))/x**5, x)

________________________________________________________________________________________